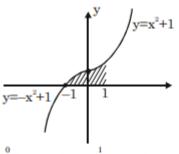
Area under the curve:


Question 1:(JEE Main 2019)

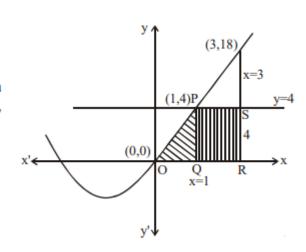
The area the region of $A = \left[\left(x, y \right) : 0 \le y \le x \left| x \right| + 1 \text{ and } -1 \le x \le 1 \right] \quad \text{in}$ sq. units, is:

- (1) $\frac{2}{3}$ (2) $\frac{1}{3}$ (3) 2 (4) $\frac{4}{3}$

Sol:

The graph is a follows

$$\int_{-1}^{0} (-x^{2} + 1) dx + \int_{0}^{1} (x^{2} + 1) dx = 2$$


Question 2: (JEE Main 2019)

The area (in sq. units) of the region $A = \{(x, y) \in R \times R | 0 \le x \le 3, 0 \le y \le 4,$ $y \le x^2 + 3x$ is:

(2)
$$\frac{59}{6}$$

$$(4) \frac{26}{3}$$

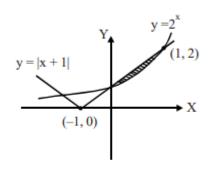
Sol:

Required Area

$$= \int_{0}^{1} (x^{2} + 3x) dx + \text{Area of rectangle PQRS}$$

$$=\frac{11}{6}+8=\frac{59}{6}$$

Question 3: (JEE Main 2019)


The area (in sq. units) of the region bounded by the curves $y = 2^x$ and y = |x + 1|, in the first quadrant is:

(2)
$$\frac{1}{2}$$

(3)
$$\log_e 2 + \frac{3}{2}$$

(4)
$$\frac{3}{2}$$

Sol:

Required Area

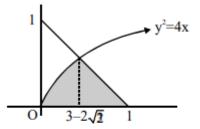
 $=\frac{3}{2}-\frac{1}{\ln 2}$

$$\int_{0}^{1} ((x+1)-2^{x}) dx$$

$$= \left(\frac{x^{2}}{2} + x - \frac{2^{x}}{\ln 2}\right)_{0}^{1}$$

$$= \left(\frac{1}{2} + 1 - \frac{2}{\ln 2}\right) - \left(0 + 0 - \frac{1}{\ln 2}\right)$$

Question 4: (JEE Main 2019)


If the area (in sq. units) of the region $\{(x, y): y^2 \le 4x, x + y \le 1, x \ge 0, y \ge 0\}$ is $a\sqrt{2} + b$, then a - b is equal to:

$$(1) \frac{8}{3}$$

(2)
$$\frac{10}{3}$$

(1)
$$\frac{8}{3}$$
 (2) $\frac{10}{3}$ (3) 6 (4) $-\frac{2}{3}$

$$\{(x,\,y):\,y^2\leq 4x,\,x+y\leq 1,\,x\geq 0,\,y\geq 0\}$$

Sol:

$$A \int_{0}^{3-2\sqrt{2}} 2\sqrt{x} dx + \frac{1}{2} (1 - (3 - 2\sqrt{2})) (1 - (3 - 2\sqrt{2}))$$

$$= \frac{2[x^{3/2}]_{0}^{3-2\sqrt{2}}}{3/2} + \frac{1}{2} (2\sqrt{2} - 2) (2\sqrt{2} - 2)$$

$$= \frac{8\sqrt{2}}{3} + (-\frac{10}{3})$$

$$a = \frac{8}{3}, b = -\frac{10}{3}$$

$$a - b = 6$$

Question 5: (JEE Main 2019)

If the area (in sq. units) bounded by the parabola $y^2 = 4\lambda x$ and the line $y = \lambda x$, $\lambda > 0$,

is $\frac{1}{9}$, then λ is equal to :

(3)
$$4\sqrt{3}$$

(4)
$$2\sqrt{6}$$

Question 6: (JEE Main 2019)

Let $S(\alpha) = \{(x,y) : y^2 \le x, 0 \le x \le \alpha\}$ and $A(\alpha)$ is area of the region $S(\alpha)$. If for a λ , $0 < \lambda <$ $4, A(\lambda) : A(4) = 2 : 5$, then λ equals

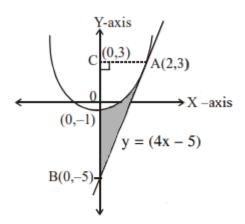
(1)
$$2\left(\frac{4}{25}\right)^{\frac{1}{3}}$$
 (2) $4\left(\frac{4}{25}\right)^{\frac{1}{3}}$

(2)
$$4\left(\frac{4}{25}\right)^{\frac{1}{3}}$$

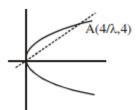
(3)
$$2\left(\frac{2}{5}\right)^{\frac{1}{3}}$$

(4)
$$4\left(\frac{2}{5}\right)^{\frac{1}{3}}$$

Question 7: (JEE Main 2019)


The area (in sq. units) bounded by the parabola $y = x^2 - 1$, the tangent at the point (2, 3) to it and the y-axis is:

$$(1) \frac{14}{3}$$


(2)
$$\frac{56}{3}$$

(3)
$$\frac{8}{3}$$

(1)
$$\frac{14}{3}$$
 (2) $\frac{56}{3}$ (3) $\frac{8}{3}$ (4) $\frac{32}{3}$

Sol:

Area =
$$\frac{1}{9} = \int_{0}^{\frac{4}{\lambda}} (\sqrt{4\lambda x} - \lambda x) dx$$

Sol:

$$S(\alpha) = \{(x,y) : y^2 \le x, 0 \le x \le \alpha\}$$

$$A(\alpha) = 2 \int_{0}^{\alpha} \sqrt{x} dx = 2\alpha^{3/2}$$

$$A(4) = 2 \times 4^{3/2} = 16$$

$$A(\lambda) = 2 \times \lambda^{3/2}$$

$$\frac{A(\lambda)}{A(4)} = \frac{2}{5} \Rightarrow \lambda = 4 \cdot \left(\frac{4}{25}\right)^{1/3}$$

Sol:

Equation of tangent at (2,3) on

$$y = x^2 - 1$$
, is $y = (4x - 5)$

:. Required shaded area

= ar (
$$\triangle$$
ABC) $-\int_{-1}^{3} \sqrt{y+1} dy$

$$=\frac{1}{2}.(8).(2)-\frac{2}{3}((y+1)^{3/2})_{-1}^{3}$$

$$=8-\frac{16}{3}=\frac{8}{3}$$
 (square units)